Xenoestrogens regulate the activity of arginine methyltransferases.

نویسندگان

  • Donghang Cheng
  • Mark T Bedford
چکیده

Arginine methylation is a common post-translational modification that has been strongly implicated in transcriptional regulation. The arginine methyltransferases (PRMTs) were first reported as transcriptional coactivators for the estrogen and androgen receptors. Compounds that inhibit these enzymes will provide us with valuable tools for dissecting the roles of these enzymes in cells, and will possibly also have therapeutic applications. In order to identify such inhibitors of the PRMTs, we have previously performed a high-throughput screen using a small molecule library. These compounds were named arginine methyltransferase inhibitors (AMIs). The majority of these inhibitors were polyphenols, and one in particular (AMI-18) shared additional features with a group of known xenoestrogens. We, thus, tested a panel of xenoestrogens and found that a number of them possess the ability to inhibit PRMT activity, in vitro. These inhibitors primarily target CARM1, and include licochalcone A, kepone, benzyl 4-hydroxybenzoate, and tamoxifen. We developed a cell-based reporter system for CARM1 activity, and showed that tamoxifen (IC(50) =30 μM) inhibits this PRMT. The ability of these compounds to regulate the activity of transcriptional coactivators may be an unappreciated mechanism of action for xenoestrogens, and might also explain the efficacy of high-dose tamoxifen treatment on estrogen receptor negative cancers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4.

The role of arginine methylation in Drosophila melanogaster is unknown. We identified a family of nine PRMTs (protein arginine methyltransferases) by sequence homology with mammalian arginine methyltransferases, which we have named DART1 to DART9 ( Drosophila arginine methyltransferases 1-9). In keeping with the mammalian PRMT nomenclature, DART1, DART4, DART5 and DART7 are the putative homolog...

متن کامل

An inhibitor of protein arginine methyltransferases, 7,7'-carbonylbis(azanediyl)bis(4-hydroxynaphthalene-2-sulfonic acid (AMI-1), is a potent scavenger of NADPH-oxidase-derived superoxide.

The methylation of proteins is an important post-translational mechanism that has been established to influence the activity of nuclear and nucleic acid binding proteins. Much less is known about the importance of protein methylation in the regulation of cytosolic proteins. Increased methylation of proteins is observed in cardiovascular disease and occurs in conjunction with elevated production...

متن کامل

Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells.

Under the instruction of cell-fate-determining, DNA-binding transcription factors, chromatin-modifying enzymes mediate and maintain cell states throughout development in multicellular organisms. Currently, small molecules modulating the activity of several classes of chromatin-modifying enzymes are available, including clinically approved histone deacetylase (HDAC) and DNA methyltransferase (DN...

متن کامل

Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders

Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and c...

متن کامل

Protein arginine methylation: an emerging regulator of the cell cycle

Protein arginine methylation is a common post-translational modification where a methyl group is added onto arginine residues of a protein to alter detection by its binding partners or regulate its activity. It is known to be involved in many biological processes, such as regulation of signal transduction, transcription, facilitation of protein-protein interactions, RNA splicing and transport. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chembiochem : a European journal of chemical biology

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2011